COVID-19 Update

Simplifying Inter-Building Fiber Networks with Signal & Serviceability

The latest in “blade-like” fiber optic network connectivity between buildings offers simplified installations, improved optimal signal integrity, and ease of service to support high-bandwidth applications.

Ed Sullivan

As the demand for high-bandwidth networks continues to proliferate on campuses of all types, many are struggling with how to implement a high-count fiber backbone that supports high-speed data requirements, and yet is reconfigurable to suit both current and future needs.

For many of these campuses—multi-building complexes such as hospitals, corporate centers, government facilities and universities—future needs are not currently known and incorporating a network system that offers both high-density and easy accessibility is a challenge. Thus, a reliable and reconfigurable system innately suited to increasing bandwidth-hungry users is needed for dynamic support of future applications.

“These types of fiber installations are becoming very popular because everyone is certain of two things. Firstly, supporting the typical user means accommodating higher bandwidth demands. Secondly, changes in the network configuration are inevitable,” says Dr. Ian Timmins, vice president of engineering and enterprise connectivity products at Optical Cable Corporation (OCC) in Roanoke, Va.

Timmins explains that in most current situations these networks will be based on high-count fiber optic backbone cabling systems. Architectures with fiber counts of 144 and 288 are not uncommon, and installations with even higher numbers are emerging.

RELATED: Employing Passive Optical LANs for Network Improvements & Flexibility

Unfortunately, many networks that are composed of high-count fiber optic cable ultimately experience disappointments and frustrations with the conventional type of cabling and connectivity. High fiber count cables with a large O.D. are inflexible and are hard to manage and install which can risk broken fibers and jeopardize the success of the system.

This, combined with connectivity utilizing stacks of splice trays feeding adapter plates with extremely high fiber counts, can make for infrastructure that is very challenging to service or execute moves, adds, and changes.

Conventional implementations intended to enhance versatility and thereby overcome this challenge can easily lead to systems with too many connectors in the communications channel. This causes increased attenuation, decreased bandwidth results and general degradation in signal integrity.

Stacks of splice trays that must be manipulated to access a single fiber can disrupt the entire network every time service is performed.  Ultimately, conventional network architecture is prone to disruptions, increased financial costs due to maintenance, and premature system overhauls.

A New “Blade-like” Approach

Users in many industries are actively seeking solutions for these problems. A new solution is offered through the OCC Blade Solution, their most recent addition to the Procyon family of high-density connectivity and structured cabling solutions.

The OCC Blade system provides flexible cable subgroups that protect the installer from damaging the fiber during the installation process, and a connectivity system that provides easy access to every fiber in the system, without disrupting peripheral fibers during servicing.

CoronaVirus Update